
Oasis: An Active Storage Framework for
Object Storage Platform

Yulai Xie1, Dan Feng1, Darrell D. E. Long2 , Yan Li2

1School of Computer, Huazhong University of Science and Technology
Wuhan National Laboratory for Optoelectronics

2University of California, Santa Cruz

Outline

 Background and Motivation
 Oasis Design and Implementation
 Evaluation
 Conclusions and Future Work

Background and Motivation

Existing problem:
 Data center and clouds are networked architecture that is
constructed via interconnecting a large number of servers, it’s
critical to avoid network bottleneck on the interconnect incurred
by big data transfer so as to provide real-time service to users.

 Solutions:
 Active storage: offloading computation from host to storage
device to reduce bandwidth requirement

Background and Motivation

Faced Challenges
 Transparent and multi-granularity processing
 Security
 Resource contention

An example: offload erasure coding to storage device
 How to automatically execute encoding and apply it on a vast
amount of data?
 How to ensure the encoding authorized by the legal user?
 How to dynamically apply encoding on the client and storage
device according to the workload status?

Our proposal and contributions

 Propose Oasis, An active storage framework for object storage
platform that leverages the OSD’s processing power to run data
intensive applications

 Frees users from needing to remember the details of offloaded
computation and use signature scheme and access control to ensure the
security of execution .

 Monitor system resources and partition application computations between
host and OSD dynamically

 Extensive experiments evaluate the performance, scalability and
implementation overhead of Oasis on three typical real-world applications:
database selection, blowfish decryption and edge detection.

Oasis Architecture Overview

 Object Command Handler
 Get and analyze OSD command

 Object Filesystem
 Manage various objects

 Association Check
 check whether any function objects
are associated with an OSD object

 Function Scheduler
 schedule function object to execute

 Function Object
 Used to hold the offloaded application function

(e.g., compression、encryption、encoding, etc)
 A piece of code that can be executed in OSD to perform
operations on certain user objects

How we use this system?
--------Example 1: Decryption

 If a user want to read an encrypted file from an OSD, what
should he do?

 Create a function object that represent
Decryption application in the OSD

 Associate this function object with an
OSD object

 Send a READ command to the OSD
object

 Then the associated function object that
represents decryption will be scheduled
to execute.

How we use this system?
--------Example 2: Encoding

 If a user want to write a file into OSDs and then encode it using
erasure coding technology, what should he do?

 Create a function object that represent erasure coding algorithm in the OSD

 Associate this function object with the OSD object (or file) to write

 Write the OSD object using a CREATE AND WRITE command

 Then the associated function object that represent erasure coding algorithm
will be scheduled to execute.

(e.g., the OSD object will be first splitted into multiple data chunks and
encoded into parity chunks, then these chunks can be distributed into
different OSDs)

OSD OSD OSD OSD

…

Client
MDS

File Data Chunks

Segment

Critical characteristics for practical use:
-- Transparent and Multi-granularity processing

Associate a function object with an OSD object
 The function object will be invoked to execute during the read or write
process.
 We can flexibly apply different application function to different kinds of files.
 Support different processing granularity.

OSD object

Function object

Data

Attribute

Function object ID

An association example

Critical characteristics for practical use:
-- Flexible and efficient management

 We use a separate partition to store function object

 Download a function object to the storage device.
------ CREATE AND WRITE command

 Remove a function object from the storage device.
------ REMOVE command

 Conveniently view which function objects are there in the storage device.
------ LIST command

 A user can know which function objects are associated with an OSD object.
------ GET ATTRIBUTES command

 We use OSD commands that manage OSD objects to manage function
objects by specifying the partition ID that holds the function objects.

Critical characteristics for practical use:
-- Security consideration

 Function object should be developed by vendors
 The vendor has professional knowledge and tools to write and validate
code.

 Administrator controls what function objects can run on the OSDs, and can
allow a signed function object by installing the vendor or user’s certificates.

 We add a permission bit called FUN_EXE into the capability to prevent
unauthorized access
 Two users may both have authority to set the attributes of an OSD
object, but only the user that downloaded function object into OSD can
invoke the function object to execute .

Critical characteristics for practical use:
-- Adaptive Computation Partition

 Partition the application computation workload according to the CPU and
network status

CPU utilization partition

Cpu2>HIGH
?Cpu2<LOW?

Cpu2>cpu1
&&

not congested
OSD

OSD
Client

Cpu2 approaches
HIGH && congested

?

OSD

N N N

N

Y
Y Y

Y

Evaluation

 Experimental setup
 A host and 1, 2 or 4 OSDs, are connected via 1Gbps Ethernet. All machines
run Redhat 2.4.20 to emulate the restricted execution environment of OSD.
 Oasis is developed based on Intel OSD reference implementation (REFv20).

Workload

Application size of dataset % of data filtering

Database Selection 1.77GB (33 million
line records)

87.4%

Edge Detection 584MB(10000
images)

96.7%

Blowfish Decryption 800MB(100 million
line records)

0

 Performance improvement

 TS: Traditional Storage (run application in client)
AS: Active Storage (run application in OSD)

 Scalability

 The performance of AS and TS are both consistent with the increase in the
OSDs.

 TS and AS are comparable in the Blowfish Decryption as no data reduction
exists in this application.

 Impact of language of function objects

0
100
200
300
400
500
600
700
800

Database
Selection

Edge
Detection

Blowfish
Decryption

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

TS AS(C) AS(Java) A large number of I/O operations are
required for the Edge Detection algorithm to
generate the output image.
 Edge Detection algorithm implementation
using the Java language is significantly
slower than the implementation using the C
language.
 Even such performance degradation with
the Java implementation may compromise
the benefits of data reduction in the Edge
Detection application achieved by the active
storage technology.

 I/O intensive application would incur a performance bottleneck with
Java implementation.

 Impact of multiple function objects

 For a hybrid application that is
composed of multiple
applications, only applications
that can make data reduction
across the I/O interconnect can
really benefit system
performance.

0
50

100
150
200
250
300
350
400
450

1 2 4

Number of OSDs
Ex

ec
ut

io
n

tim
e

(s
ec

)

TS AS(one) AS(two)

AS(one): first decryption on OSD, then selection on host
AS(two): process both decryption and selection applications

on OSDs

 Performance with Adaptive Computation Partition

 TS: Traditional Storage

AS: Active Storage

AAS: Adaptive Active Storage

 AAS has better performance
than TS and AS.

 Implementation overhead

 During every Read or Write, the system has to check whether there exists any
function object associated with the OSD object that is being read or written.

 The overhead is small, 1.2%-5.9% for read and 0.6%-9.9% for write.

Integrating Oasis with Seagate Kinetic Object Storage Platform

Conclusions and Future work

 Oasis: an active storage framework for object storage platform
 Four kinds of critical characteristics in terms of user case

1) Transparent and multiple granularity processing,
2) flexible management,
3) preliminary security,
4) adaptive computation partition

 System demonstration on three real world applications in terms of
performance, scalability, language, etc.

 Future work
 Concurrent execution of multiple function objects by employing sandbox
technology
 Evaluation on big data center and cloud storage

Thanks!

	�Oasis: An Active Storage Framework for Object Storage Platform
	Outline
	Background and Motivation
	Background and Motivation
	Our proposal and contributions
	Oasis Architecture Overview
	How we use this system?� --------Example 1: Decryption
	How we use this system?� --------Example 2: Encoding
	Slide Number 9
	Critical characteristics for practical use:� -- Transparent and Multi-granularity processing
	An association example
	Critical characteristics for practical use:� -- Flexible and efficient management
	Critical characteristics for practical use:� -- Security consideration
	Critical characteristics for practical use:� -- Adaptive Computation Partition
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Conclusions and Future work
	Slide Number 24

